IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-04-14.html
   My bibliography  Save this article

The Prospect of Rooftop Photovoltaic Development Considering Global Horizontal Irradiation Uncertainty and Government Policies: A Case of Java Island, Indonesia

Author

Listed:
  • Rizki Firmansyah Setya Budi

    (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia.)

  • Sarjiya Sarjiya

    (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia.)

  • Sasongko Pramoho Hadi

    (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia.)

Abstract

Global horizontal irradiation uncertainty and government policy significantly affect the economics of rooftop photovoltaic development. Unfortunately, previous studies neglect these aspects. Therefore, it is necessary to undertake the economic analysis of rooftop photovoltaic development by considering its global horizontal irradiation uncertainty and government policies. This research creates a model that can be used to perform analysis and assess rooftop photovoltaic development prospects by considering irradiation uncertainty and government policies. The attractiveness of rooftop photovoltaic development is indicated by the value of the Levelized cost of electricity, net present value, and internal rate of return. Monte Carlo simulation models irradiation uncertainty. Java Island in Indonesia is used as a case study to show the performance of the proposed model. The research results show that the rooftop photovoltaic is not economically viable if built by the utility. Rooftop photovoltaic systems are only profitable when built by the private sector and is used for internal usage only. These rooftop photovoltaic investments provide an internal rate of return above 14%, which shows that investors with green capital funds and local investors are interested in investing. The emission reductions from a 100 m2 rooftop photovoltaic system vary from 214 to 384 tons of CO2 per year.

Suggested Citation

  • Rizki Firmansyah Setya Budi & Sarjiya Sarjiya & Sasongko Pramoho Hadi, 2022. "The Prospect of Rooftop Photovoltaic Development Considering Global Horizontal Irradiation Uncertainty and Government Policies: A Case of Java Island, Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 104-116, July.
  • Handle: RePEc:eco:journ2:2022-04-14
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/13066/6825
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/13066
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haegermark, Maria & Kovacs, Peter & Dalenbäck, Jan-Olof, 2017. "Economic feasibility of solar photovoltaic rooftop systems in a complex setting: A Swedish case study," Energy, Elsevier, vol. 127(C), pages 18-29.
    2. Hidayatno, Akhmad & Setiawan, Andri D. & Wikananda Supartha, I Made & Moeis, Armand O. & Rahman, Irvanu & Widiono, Eddie, 2020. "Investigating policies on improving household rooftop photovoltaics adoption in Indonesia," Renewable Energy, Elsevier, vol. 156(C), pages 731-742.
    3. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Adhiim Muthahhari & Candra Febri Nugraha & Naufal Hilmi Fauzan & Lukman Subekti & Rizki Firmansyah Setya Budi, 2024. "Accelerating Renewable Energy Integration in Energy Planning Considering the PV Techno-Economics and Hourly Profile, Case Study: Indonesian Power Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 490-498, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    2. Toshiyuki Sueyoshi & Ruchuan Zhang & Aijun Li, 2023. "Measuring and Analyzing Operational Efficiency and Returns to Scale in a Time Horizon: Assessment of China’s Electricity Generation & Transmission at Provincial Levels," Energies, MDPI, vol. 16(2), pages 1-23, January.
    3. Liu, Zhen & Tang, Yuk Ming & Chau, Ka Yin & Chien, Fengsheng & Iqbal, Wasim & Sadiq, Muhammad, 2021. "Incorporating strategic petroleum reserve and welfare losses: A way forward for the policy development of crude oil resources in South Asia," Resources Policy, Elsevier, vol. 74(C).
    4. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    5. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    6. Wang, Derek D. & Sueyoshi, Toshiyuki, 2018. "Climate change mitigation targets set by global firms: Overview and implications for renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 386-398.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    8. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    9. Aquila, Giancarlo & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Balestrassi, Pedro Paulo & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2024. "Net metering rolling credits vs. net billing buyback: An economic analysis of a policy option proposal for photovoltaic prosumers," Renewable Energy, Elsevier, vol. 232(C).
    10. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    11. Li, Yan & Zhang, Qi & Wang, Ge & McLellan, Benjamin & Liu, Xue Fei & Wang, Le, 2018. "A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 214-223.
    12. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    13. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    14. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    15. Li, Aijun & Zhang, Aizhen & Huang, Huijie & Yao, Xin, 2018. "Measuring unified efficiency of fossil fuel power plants across provinces in China: An analysis based on non-radial directional distance functions," Energy, Elsevier, vol. 152(C), pages 549-561.
    16. Zhang, Haoran & Yan, Jinyue & Yu, Qing & Obersteiner, Michael & Li, Wenjing & Chen, Jinyu & Zhang, Qiong & Jiang, Mingkun & Wallin, Fredrik & Song, Xuan & Wu, Jiang & Wang, Xin & Shibasaki, Ryosuke, 2021. "1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown," Applied Energy, Elsevier, vol. 283(C).
    17. Chen, Xin & Zhou, Wenjia, 2023. "Performance evaluation of aquavoltaics in China: Retrospect and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    19. Sueyoshi, Toshiyuki & Wang, Derek, 2018. "DEA environmental assessment on US petroleum industry: Non-radial approach with translation invariance in time horizon," Energy Economics, Elsevier, vol. 72(C), pages 276-289.
    20. Derek Wang & Tianchi Li, 2018. "Carbon Emission Performance of Independent Oil and Natural Gas Producers in the United States," Sustainability, MDPI, vol. 10(1), pages 1-18, January.

    More about this item

    Keywords

    Government Policies; Economics of Rooftop Photovoltaic; Global Horizontal Irradiation Uncertainty; Carbon Dioxide Emission;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • E39 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-04-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.