IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-02-4.html
   My bibliography  Save this article

Building Energy Consumption Prediction Using Neural-Based Models

Author

Listed:
  • Adrian-Nicolae Buturache

    (Economic Cybernetics and Statistics Doctoral School, Bucharest University of Economic Studies, Bucharest, Romania)

  • Stelian Stancu

    (Informatics and Economic Cybernetics Department, Bucharest University of Economic Studies, Bucharest, Romania)

Abstract

In the recent years digital transformation became one of the most used approaches in building energy consumption optimization. Increased interest in improving energy sustainability and comfort inside buildings has created an opportunity for digital transformation to build predictive tools for energy consumption. By retrofitting or implementing new construction technologies nowadays the quantity and quality of the operational data collected has reached unprecedented levels. This data must be consumed by implementing powerful predictive tools that will provide the needed level of certainty. Adopting Six Sigma's Define, Measure, Analyze, Improve, Control (DMAIC) cycle as predictive analytics framework will make this paper accessible for both professionals working in energy industry and researchers that are developing models, creating the premises for reducing the gap between research and real-world business, guiding the use of data. Moreover, the selected strategy for preprocessing and hyperparameter selection is presented, the final selected models showing scalability and flexibility. At the end the architectures, performance and training time are discussed and then coupled with the thought process providing a way to weigh up the options. Building energy consumption prediction, it is a relevant and actual topic. Firstly, on European level, meeting the targets set by the new European Green Deal for buildings sector is relying heavily on digitization and therefore on predictive analytics. Secondly, on Romania level, the liberalization of the Energy market created an unpreceded energy price increase. The negative social impact might be diminished not only by the price reduction, but also by understanding how the energy is consumed.

Suggested Citation

  • Adrian-Nicolae Buturache & Stelian Stancu, 2022. "Building Energy Consumption Prediction Using Neural-Based Models," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 30-38, March.
  • Handle: RePEc:eco:journ2:2022-02-4
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/12739/6655
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/12739
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Machine learning; Artificial neural networks; Building energy prediction; Six sigma;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-02-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.