IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2017-03-30.html
   My bibliography  Save this article

Testing the Shock Effect of Some Policy Variables on Electricity Generation in Nigeria

Author

Listed:
  • Samuel Nnamdi Marcus

    (Department of Economics, Achievers University, Owo, Nigeria,)

  • Amachukwu Chibuzo Okezie

    (Chartered Institute of Bankers Consultant, Lagos, Nigeria.)

Abstract

Energy has been adjudged as the source of economic growth and wealth, the basis of economic and political controversy, technological inventions and innovations, and the basis of an epochal challenge global environment. This study examined the shock effect of some causative factors influencing electricity generation in Nigeria for 46 years beginning from 1970. The objective of the study is to investigate the effect of system shock on electricity generation in Nigeria. To achieve this, the study employed the impulse response function and variance error decomposition approaches through the vector error correction model. The study used the approaches to capture the impulse response of the variables and the variance error decomposition to obtain the reaction of the variables to errors committed in forecasting them. The study found no significant relationship between observed variables and electricity generation in the short run. There is a unidirectional causality running from electricity generation to economic growth, installed capacity and gas consumption and an independent causality between electricity generation, electricity consumption, price of electricity, and rainfall. The responds of electricity generation to shocks from other variables in the model are relatively low and sluggish. In forecasting electricity generation, error due to gas consumption is highest followed by error due to installed capacity of electricity. The study recommends the increase in electricity generation through increased installed capacity of electricity, electricity consumption, and price of electricity, economic activities, gas consumption and the construction of small hydro generating stations in all local government areas of the country.

Suggested Citation

  • Samuel Nnamdi Marcus & Amachukwu Chibuzo Okezie, 2017. "Testing the Shock Effect of Some Policy Variables on Electricity Generation in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 247-255.
  • Handle: RePEc:eco:journ2:2017-03-30
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijeep/article/download/4990/3041
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijeep/article/view/4990/3041
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chinhao Chong & Weidou Ni & Linwei Ma & Pei Liu & Zheng Li, 2015. "The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use," Energies, MDPI, vol. 8(4), pages 1-39, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    2. Muhammad Asyraf Azni & Rasyikah Md Khalid, 2021. "Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    3. Beibei Wang & Xiaocong Liu & Feng Zhu & Xiaoqing Hu & Wenlu Ji & Shengchun Yang & Ke Wang & Shuhai Feng, 2015. "Unit Commitment Model Considering Flexible Scheduling of Demand Response for High Wind Integration," Energies, MDPI, vol. 8(12), pages 1-22, December.
    4. Jason Yi Juang Yeo & Bing Shen How & Sin Yong Teng & Wei Dong Leong & Wendy Pei Qin Ng & Chun Hsion Lim & Sue Lin Ngan & Jaka Sunarso & Hon Loong Lam, 2020. "Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    5. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    6. Xu Li & Chinhao Chong & Linwei Ma & Pei Liu & Xuesi Shen & Zibo Jia & Cheng Wang & Zheng Li & Weidou Ni, 2018. "Coordinating the Dynamic Development of Energy and Industry in Composite Regions: An I-SDOP Analysis of the BTH Region," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    7. Honghua Yang & Linwei Ma & Zheng Li, 2020. "A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015," Energies, MDPI, vol. 13(8), pages 1-24, April.
    8. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    9. Jiafu Yin & Dongmei Zhao, 2018. "Fuzzy Stochastic Unit Commitment Model with Wind Power and Demand Response under Conditional Value-At-Risk Assessment," Energies, MDPI, vol. 11(2), pages 1-18, February.
    10. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
    11. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Shaban R. S. Aldhshan & Khairul Nizam Abdul Maulud & Wan Shafrina Wan Mohd Jaafar & Othman A. Karim & Biswajeet Pradhan, 2021. "Energy Consumption and Spatial Assessment of Renewable Energy Penetration and Building Energy Efficiency in Malaysia: A Review," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    13. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    14. Chung-Siong Tang & Mori Kogid & James Alin & Brian Dollery, 2022. "Modelling Sectoral Energy Consumption in Malaysia: Assessing the Asymmetric Effects," Sustainability, MDPI, vol. 14(3), pages 1-17, February.
    15. Tan, Chin-Seang & Ooi, Hooi-Yin & Goh, Yen-Nee, 2017. "A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia," Energy Policy, Elsevier, vol. 107(C), pages 459-471.
    16. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    18. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    19. Siti Norasyiqin Abdul Latif & Meng Soon Chiong & Srithar Rajoo & Asako Takada & Yoon-Young Chun & Kiyotaka Tahara & Yasuyuki Ikegami, 2021. "The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix," Energies, MDPI, vol. 14(8), pages 1-26, April.

    More about this item

    Keywords

    Electricity Generation; Vector Error Correction Mechanism; Hydro and Thermal Station;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2017-03-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.