IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-16-00499.html
   My bibliography  Save this article

Identification through Heteroscedasticity: What If We Have the Wrong Form?

Author

Listed:
  • Tak Wai Chau

    (The Hong Kong Polytechnic University)

Abstract

Recent literature proposes estimators that utilize the heteroscedasticity in the error terms to identify the coefficient of the endogenous regressor in a standard linear model, while these estimators do not require extra exogenous variables as the excluded instruments. The assumed forms of heteroscedasticity differ across estimators, but it is often not straightforward how to justify the validity of such assumption a-priori. This simulation study investigates the robustness of the two most popular estimators under different forms of heteroscedasticity. The results show that both estimators can be substantially biased under wrong assumptions on the form of heteroscedasticity. Moreover, the overidentification test proposed for one estimator can have low power against the wrong form of heteroscedasticity. This study also explores the use of the maximum likelihood framework and the use of Akaike Information Criteria (AIC) to distinguish these two models. The simulation results show that it has good performance.

Suggested Citation

  • Tak Wai Chau, 2017. "Identification through Heteroscedasticity: What If We Have the Wrong Form?," Economics Bulletin, AccessEcon, vol. 37(4), pages 2413-2421.
  • Handle: RePEc:ebl:ecbull:eb-16-00499
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2017/Volume37/EB-17-V37-I4-P215.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konda, Bruhan & González‐Sauri, Mario & Cowan, Robin & Yashodha, Yashodha & Chellattan Veettil, Prakashan, 2021. "Social networks and agricultural performance: A multiplex analysis of interactions among Indian rice farmers," MERIT Working Papers 2021-030, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    Instrumental Variable Estimation; Endogeneity; Heteroscedasticity; Misspecification; Maximum Likelihood;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-16-00499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.