Author
Abstract
The implementation of the energy transition in Germany requires the further expansion of wind and solar power. With both of these technologies, electricity generation is subject to strong seasonal and weather-related variations. In consequence, temporary situations may arise where more power is generated than can be consumed at that point in time. In the present study, DIW Berlin uses selected future scenarios to estimate the potential scale of these surpluses and to examine how they should be tackled. The aforementioned simulations indicate that increasing the flexibility of the energy system can drastically reduce the occurrence of surpluses. Currently, many power plants remain producing even in situations of low demand due to technical, economic and systemic reasons. If this must run requirement of conventional power plants is abandoned, and if power generated by biomass is tailored to demand, it would be possible to reduce the forecast power surplus from wind and solar energy for 2032 from over 18 percent to less than two percent of their potential annual production. The more flexible operation of Germany's fleet of power stations should, therefore, be an important aim for the country's energy policy. Exporting power surpluses or using them in heating or demand-side measures will further increase system flexibility. Power storage devices can absorb some of the remaining surplus. Storage of all surplus power might not be economically viable. If storage capacity is merely constructed to capture such surplus, then it would be more cost efficient to curtail some of the peak renewable energy production. The size of the surplus that would need to be curtailed is in fact relatively small: based on a flexible system, in 2032, only less than two percent of potential power generated by wind and solar energy would need to be discarded. [...] Die Umsetzung der Energiewende erfordert einen weiteren Ausbau von Windkraft und Photovoltaik in Deutschland. Die Stromerzeugungsmöglichkeiten beider Technologien schwanken stark je nach Wetterlage, Tages- und Jahreszeit. So kann es dazu kommen, dass temporär mehr Strom produziert wird, als zu diesem Zeitpunkt verbraucht werden kann. Das DIW Berlin hat anhand ausgewählter Zukunftsszenarien untersucht, wie groß diese Überschüsse sein werden, und wie mit ihnen umgegangen werden sollte. Die Simulationen zeigen, dass eine Flexibilisierung des Stromsystems die Entstehung von Überschüssen deutlich verringert. Derzeit bleiben viele Kraftwerke aus technischen, ökonomischen und systembedingten Gründen auch in Schwachlastphasen am Netz. Durch die Abschaffung dieses Must-Run-Sockels und eine flexible Biomasseverstromung könnte der Stromüberschuss aus Wind- und Solarenergie im Jahr 2032 von über 18 Prozent auf unter zwei Prozent der möglichen Jahreserzeugung gesenkt werden. Die Flexibilisierung des Kraftwerksbetriebs sollte daher ein wichtiges Ziel der deutschen Energiepolitik sein. Darüber hinaus ließe sich das System durch den Export von Stromüberschüssen und andere Maßnahmen weiter flexibilisieren. Eine Aufnahme der gesamten verbleibenden Überschüsse durch zusätzliche Speicher ist jedoch ökonomisch nicht sinnvoll. Stattdessen können die größten Erzeugungsspitzen abgeregelt werden. Die Mengen wären in einem flexiblen System relativ gering: Im Jahr 2032 müssten nicht einmal zwei Prozent der potenziellen Stromerzeugung aus Wind- und Solarenergie verworfen werden. Mittel- und langfristig werden verschiedene Energiespeicher nicht nur zur Aufnahme von Überschüssen, sondern auch zur Spitzenlastdeckung, zur Flexibilisierung der thermischen Stromerzeugung und zur Bereitstellung von Systemdienstleistungen benötigt. Dazu gehören nicht nur Stromspeicher, sondern auch Wärme- und Gasspeicher. Aus energiepolitischer Sicht ist daher die weitere Förderung von Forschung und Entwicklung in diesen Bereichen geboten.
Suggested Citation
Wolf-Peter Schill, 2013.
"Integration von Wind- und Solarenergie: flexibles Stromsystem verringert Überschüsse,"
DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(34), pages 3-14.
Handle:
RePEc:diw:diwwob:80-34-1
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Berlo, Kurt & Wagner, Oliver, 2015.
"Die kommunale Kraft-Wärme-Kopplung im Spannungsfeld zwischen Strommarkt und Energiewende: Eine Analyse der Rahmenbedingungen für Stadtwerke zum Ausbau der Kraft-Wärme-Kopplung,"
Wuppertal Papers
188, Wuppertal Institute for Climate, Environment and Energy.
- Wolf-Peter Schill & Jochen Diekmann, 2014.
"Die Kontroverse um Kapazitätsmechanismen für den deutschen Strommarkt,"
DIW Roundup: Politik im Fokus
5, DIW Berlin, German Institute for Economic Research.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwob:80-34-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.