IDEAS home Printed from https://ideas.repec.org/a/diw/diwwob/76-21-3.html
   My bibliography  Save this article

Konjunkturelle Frühindikatoren in der Krise: weiche Faktoren stärker als harte

Author

Listed:
  • Konstantin A. Kholodilin
  • Stefan Kooths

Abstract

Die aktuelle Wirtschaftskrise wirft die Frage auf, ob nicht durch eine bessere Ausschöpfung der in den verschiedenen Frühindikatoren enthaltenen Informationen die aufgetretenen Prognosefehler hätten vermieden werden können. Dies gilt insbesondere vor dem Hintergrund des überraschend abrupten konjunkturellen Einbruchs. Auf der Basis eines umfangreichen Datensatzes wird mit verschiedenen ökonometrischen Verfahren nach einem Frühindikatorensystem gesucht, das aussagekräftiger ist. Neben dem Test alternativer ökonometrischer Ansätze gehen wir dabei auch der zentralen Frage nach: Sind weiche, also umfragebasierte Indikatoren, die die Erwartungen der wirtschaftlichen Entscheidungsträger abfragen, in Zeiten heftiger konjunktureller Verwirbelungen zuverlässiger als harte Indikatoren, die erst nachträglich die Ergebnisse ökonomischer Entscheidungen beschreiben.

Suggested Citation

  • Konstantin A. Kholodilin & Stefan Kooths, 2009. "Konjunkturelle Frühindikatoren in der Krise: weiche Faktoren stärker als harte," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(21), pages 348-354.
  • Handle: RePEc:diw:diwwob:76-21-3
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.98246.de/09-21-3.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Mixed data sampling; Nowcasting; Factor forecasts; German business conditions;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwob:76-21-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.