IDEAS home Printed from https://ideas.repec.org/a/cup/pscirm/v8y2020i1p1-13_1.html
   My bibliography  Save this article

The causal interpretation of estimated associations in regression models

Author

Listed:
  • Keele, Luke
  • Stevenson, Randolph T.
  • Elwert, Felix

Abstract

A common causal identification strategy in political science is selection on observables. This strategy assumes one observes a set of covariates that is, after statistical adjustment, sufficient to make treatment status as-if random. Under adjustment methods such as matching or inverse probability weighting, coefficients for control variables are treated as nuisance parameters and are not directly estimated. This is in direct contrast to regression approaches where estimated parameters are obtained for all covariates. Analysts often find it tempting to give a causal interpretation to all the parameters in such regression models—indeed, such interpretations are often central to the proposed research design. In this paper, we ask when we can justify interpreting two or more coefficients in a regression model as causal parameters. We demonstrate that analysts must appeal to causal identification assumptions to give estimates causal interpretations. Under selection on observables, this task is complicated by the fact that more than one causal effect might be identified. We show how causal graphs provide a framework for clearly delineating which effects are presumed to be identified and thus merit a causal interpretation, and which are not. We conclude with a set of recommendations for how researchers should interpret estimates from regression models when causal inference is the goal.

Suggested Citation

  • Keele, Luke & Stevenson, Randolph T. & Elwert, Felix, 2020. "The causal interpretation of estimated associations in regression models," Political Science Research and Methods, Cambridge University Press, vol. 8(1), pages 1-13, January.
  • Handle: RePEc:cup:pscirm:v:8:y:2020:i:1:p:1-13_1
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2049847019000311/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:pscirm:v:8:y:2020:i:1:p:1-13_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ram .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.