Generalizing from Survey Experiments Conducted on Mechanical Turk: A Replication Approach
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andreas Fügener & Jörn Grahl & Alok Gupta & Wolfgang Ketter, 2022. "Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation," Information Systems Research, INFORMS, vol. 33(2), pages 678-696, June.
- Ulrich Thy Jensen, 2020. "Is self-reported social distancing susceptible to social desirability bias? Using the crosswise model to elicit sensitive behaviors," Journal of Behavioral Public Administration, Center for Experimental and Behavioral Public Administration, vol. 3(2).
- Accominotti, Fabien & Tadmon, Daniel, 2020. "How the reification of merit breeds inequality: theory and experimental evidence," LSE Research Online Documents on Economics 103865, London School of Economics and Political Science, LSE Library.
- Abel Brodeur, Nikolai M. Cook, Anthony Heyes, 2022.
"We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell Us about Publication Bias and p-Hacking in Online Experiments,"
LCERPA Working Papers
am0133, Laurier Centre for Economic Research and Policy Analysis.
- Brodeur, Abel & Cook, Nikolai & Heyes, Anthony, 2022. "We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell Us about Publication Bias and p-Hacking in Online Experiments," IZA Discussion Papers 15478, Institute of Labor Economics (IZA).
- Brodeur, Abel & Cook, Nikolai & Heyes, Anthony, 2022. "We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell Us about Publication Bias and p-Hacking in Online Experiments," MetaArXiv a9vhr, Center for Open Science.
- Johannes G. Jaspersen & Marc A. Ragin & Justin R. Sydnor, 2022. "Insurance demand experiments: Comparing crowdworking to the lab," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 1077-1107, December.
- Zach Branson & Tirthankar Dasgupta, 2020. "Sampling‐based Randomised Designs for Causal Inference under the Potential Outcomes Framework," International Statistical Review, International Statistical Institute, vol. 88(1), pages 101-121, April.
- Lamberova, Natalia, 2021. "The puzzling politics of R&D: Signaling competence through risky projects," Journal of Comparative Economics, Elsevier, vol. 49(3), pages 801-818.
- Florian Pethig & Julia Kroenung, 2023. "Biased Humans, (Un)Biased Algorithms?," Journal of Business Ethics, Springer, vol. 183(3), pages 637-652, March.
- Wilkin, Carla & Ferreira, Aldónio & Rotaru, Kristian & Gaerlan, Luigi Red, 2020. "Big data prioritization in SCM decision-making: Its role and performance implications," International Journal of Accounting Information Systems, Elsevier, vol. 38(C).
- Kroll, Alexander & Vogel, Dominik, 2021. "Why Public Employees Manipulate Performance Data: Prosocial Impact, Job Stress, and Red Tape," SocArXiv eyjh3, Center for Open Science.
- Farjam, Mike & Bravo, Giangiacomo, 2023. "Do you really believe that? The effect of economic incentives on the acceptance of real-world data in a polarized context," OSF Preprints sdmhw, Center for Open Science.
- Brodeur, Abel & Cook, Nikolai & Heyes, Anthony, 2022.
"We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell us about p-Hacking and Publication Bias in Online Experiments,"
GLO Discussion Paper Series
1157, Global Labor Organization (GLO).
- Brodeur, Abel & Cook, Nikolai & Heyes, Anthony, 2022. "We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell us about p-Hacking and Publication Bias in Online Experiments," I4R Discussion Paper Series 8, The Institute for Replication (I4R).
- Laura D. Scherer & Brian J. Zikmund-Fisher, 2020. "Eliciting Medical Maximizing-Minimizing Preferences with a Single Question: Development and Validation of the MM1," Medical Decision Making, , vol. 40(4), pages 545-550, May.
- Ritwik Banerjee & Priyama Majumdar, 2023.
"Exponential growth bias in the prediction of COVID‐19 spread and economic expectation,"
Economica, London School of Economics and Political Science, vol. 90(358), pages 653-689, April.
- Banerjee, Ritwik & Majumdar, Priyama, 2020. "Exponential Growth Bias in the Prediction of COVID-19 Spread and Economic Expectation," IZA Discussion Papers 13664, Institute of Labor Economics (IZA).
- Matthew Amengual & Rita Mota & Alexander Rustler, 2023. "The ‘Court of Public Opinion:’ Public Perceptions of Business Involvement in Human Rights Violations," Journal of Business Ethics, Springer, vol. 185(1), pages 49-74, June.
- Sean F. Ellis & Olesya M. Savchenko & Kent D. Messer, 2022. "Mitigating stigma associated with recycled water," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 1077-1099, May.
- Chinchanachokchai, Sydney & de Gregorio, Federico, 2020. "A consumer socialization approach to understanding advertising avoidance on social media," Journal of Business Research, Elsevier, vol. 110(C), pages 474-483.
- Beata Woźniak-Jęchorek, 2023. "Experiments in Modern Economics – Expansion and Technological and Institutional Innovations in the U.S," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 1, pages 78-101.
- FabianG. Neuner, 2020. "Public Opinion and the Legitimacy of Global Private EnvironmentalGovernance," Global Environmental Politics, MIT Press, vol. 20(1), pages 60-81, February.
- Daniel L. Carlson & Richard J. Petts, 2022. "US Parents’ Domestic Labor During the First Year of the COVID-19 Pandemic," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(6), pages 2393-2418, December.
- Jesse Chandler & Jacob Hartog & Erin Lipman & Jonathan Gellar, "undated". "The Effect of School Report Card Design on Usability, Understanding, and Satisfaction," Mathematica Policy Research Reports 5cb96f706ee54791920e0a31e, Mathematica Policy Research.
- Jerrod M. Penn & Daniel R. Petrolia & J. Matthew Fannin, 2023. "Hypothetical bias mitigation in representative and convenience samples," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 721-743, June.
- Mariken van der Velden & Felicia Loecherbach, 2021. "Epistemic Overconfidence in Algorithmic News Selection," Media and Communication, Cogitatio Press, vol. 9(4), pages 182-197.
- Trisha R. Shrum, 2021. "The salience of future impacts and the willingness to pay for climate change mitigation: an experiment in intergenerational framing," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:pscirm:v:7:y:2019:i:03:p:613-628_00. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ram .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.