Author
Listed:
- Hartman, Erin
- Huang, Melody
Abstract
Even in the best-designed experiment, noncompliance can complicate analysis. While the intent-to-treat effect remains identified, randomization alone no longer identifies the complier average causal effect (CACE). Instrumental variables approaches, which rely on the exclusion restriction, can suffer from high variance, particularly when the experiment has a low compliance rate. We provide a framework which broadens the set of design and analysis techniques political science researchers can use when addressing noncompliance. Building on the growing literature about the advantages of ex-ante design decisions to improve precision, we show blocking on variables related to both compliance and the outcome can greatly improve all the estimators we propose. Drawing on work in statistics, we introduce the principal ignorability assumption and a class of principal score weighting estimators, which can exhibit large gains in precision in low compliance settings. We then combine principal ignorability and blocking with a simple estimation strategy to derive a more efficient estimation strategy for the CACE. In a re-evaluation of a study on the effect of GOTV on turnout, we find that the principal ignorability approaches result in confidence intervals roughly half the size of traditional instrumental variable approaches.
Suggested Citation
Hartman, Erin & Huang, Melody, 2024.
"Improving precision through design and analysis in experiments with noncompliance,"
Political Science Research and Methods, Cambridge University Press, vol. 12(3), pages 557-572, July.
Handle:
RePEc:cup:pscirm:v:12:y:2024:i:3:p:557-572_6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:pscirm:v:12:y:2024:i:3:p:557-572_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ram .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.