IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v32y2024i2p157-171_1.html
   My bibliography  Save this article

Generalized Kernel Regularized Least Squares

Author

Listed:
  • Chang, Qing
  • Goplerud, Max

Abstract

Kernel regularized least squares (KRLS) is a popular method for flexibly estimating models that may have complex relationships between variables. However, its usefulness to many researchers is limited for two reasons. First, existing approaches are inflexible and do not allow KRLS to be combined with theoretically motivated extensions such as random effects, unregularized fixed effects, or non-Gaussian outcomes. Second, estimation is extremely computationally intensive for even modestly sized datasets. Our paper addresses both concerns by introducing generalized KRLS (gKRLS). We note that KRLS can be re-formulated as a hierarchical model thereby allowing easy inference and modular model construction where KRLS can be used alongside random effects, splines, and unregularized fixed effects. Computationally, we also implement random sketching to dramatically accelerate estimation while incurring a limited penalty in estimation quality. We demonstrate that gKRLS can be fit on datasets with tens of thousands of observations in under 1 min. Further, state-of-the-art techniques that require fitting the model over a dozen times (e.g., meta-learners) can be estimated quickly.

Suggested Citation

  • Chang, Qing & Goplerud, Max, 2024. "Generalized Kernel Regularized Least Squares," Political Analysis, Cambridge University Press, vol. 32(2), pages 157-171, April.
  • Handle: RePEc:cup:polals:v:32:y:2024:i:2:p:157-171_1
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S104719872300027X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:32:y:2024:i:2:p:157-171_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.