Author
Abstract
Established approaches to analyze multilingual text corpora require either a duplication of analysts’ efforts or high-quality machine translation (MT). In this paper, I argue that multilingual sentence embedding (MSE) is an attractive alternative approach to language-independent text representation. To support this argument, I evaluate MSE for cross-lingual supervised text classification. Specifically, I assess how reliably MSE-based classifiers detect manifesto sentences’ topics and positions compared to classifiers trained using bag-of-words representations of machine-translated texts, and how this depends on the amount of training data. These analyses show that when training data are relatively scarce (e.g., 20K or less-labeled sentences), MSE-based classifiers can be more reliable and are at least no less reliable than their MT-based counterparts. Furthermore, I examine how reliable MSE-based classifiers label sentences written in languages not in the training data, focusing on the task of discriminating sentences that discuss the issue of immigration from those that do not. This analysis shows that compared to the within-language classification benchmark, such “cross-lingual transfer” tends to result in fewer reliability losses when relying on the MSE instead of the MT approach. This study thus presents an important addition to the cross-lingual text analysis toolkit.
Suggested Citation
Licht, Hauke, 2023.
"Cross-Lingual Classification of Political Texts Using Multilingual Sentence Embeddings,"
Political Analysis, Cambridge University Press, vol. 31(3), pages 366-379, July.
Handle:
RePEc:cup:polals:v:31:y:2023:i:3:p:366-379_7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:31:y:2023:i:3:p:366-379_7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.