IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v31y2023i2p257-277_6.html
   My bibliography  Save this article

Change-Point Detection and Regularization in Time Series Cross-Sectional Data Analysis

Author

Listed:
  • Park, Jong Hee
  • Yamauchi, Soichiro

Abstract

Researchers of time series cross-sectional data regularly face the change-point problem, which requires them to discern between significant parametric shifts that can be deemed structural changes and minor parametric shifts that must be considered noise. In this paper, we develop a general Bayesian method for change-point detection in high-dimensional data and present its application in the context of the fixed-effect model. Our proposed method, hidden Markov Bayesian bridge model, jointly estimates high-dimensional regime-specific parameters and hidden regime transitions in a unified way. We apply our method to Alvarez, Garrett, and Lange’s (1991, American Political Science Review 85, 539–556) study of the relationship between government partisanship and economic growth and Allee and Scalera’s (2012, International Organization 66, 243–276) study of membership effects in international organizations. In both applications, we found that the proposed method successfully identify substantively meaningful temporal heterogeneity in parameters of regression models.

Suggested Citation

  • Park, Jong Hee & Yamauchi, Soichiro, 2023. "Change-Point Detection and Regularization in Time Series Cross-Sectional Data Analysis," Political Analysis, Cambridge University Press, vol. 31(2), pages 257-277, April.
  • Handle: RePEc:cup:polals:v:31:y:2023:i:2:p:257-277_6
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198722000237/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:31:y:2023:i:2:p:257-277_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.