Author
Abstract
Given the increasing quantity and impressive placement of work on Bayesian process tracing, this approach has quickly become a frontier of qualitative research methods. Moreover, it has dominated the process-tracing modules at the Institute for Qualitative and Multi-Method Research (IQMR) and the American Political Science Association (APSA) meetings for over five years, rendering its impact even greater. Proponents of qualitative Bayesianism make a series of strong claims about its contributions and scope of inferential validity. Four claims stand out: (1) it enables causal inference from iterative research, (2) the sequence in which we evaluate evidence is irrelevant to inference, (3) it enables scholars to fully engage rival explanations, and (4) it prevents ad hoc hypothesizing and confirmation bias. Notwithstanding the stakes of these claims and breadth of traction this method has received, no one has systematically evaluated the promises, trade-offs, and limitations that accompany Bayesian process tracing. This article evaluates the extent to which the method lives up to the mission. Despite offering a useful framework for conducting iterative research, the current state of the method introduces more bias than it corrects for on numerous dimensions. The article concludes with an examination of the opportunity costs of learning Bayesian process tracing and a set of recommendations about how to push the field forward.
Suggested Citation
Zaks, Sherry, 2021.
"Updating Bayesian(s): A Critical Evaluation of Bayesian Process Tracing,"
Political Analysis, Cambridge University Press, vol. 29(1), pages 58-74, January.
Handle:
RePEc:cup:polals:v:29:y:2021:i:1:p:58-74_4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:29:y:2021:i:1:p:58-74_4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.