IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v27y2019i04p481-502_00.html
   My bibliography  Save this article

Hierarchical Item Response Models for Analyzing Public Opinion

Author

Listed:
  • Zhou, Xiang

Abstract

Opinion surveys often employ multiple items to measure the respondent’s underlying value, belief, or attitude. To analyze such types of data, researchers have often followed a two-step approach by first constructing a composite measure and then using it in subsequent analysis. This paper presents a class of hierarchical item response models that help integrate measurement and analysis. In this approach, individual responses to multiple items stem from a latent preference, of which both the mean and variance may depend on observed covariates. Compared with the two-step approach, the hierarchical approach reduces bias, increases efficiency, and facilitates direct comparison across surveys covering different sets of items. Moreover, it enables us to investigate not only how preferences differ among groups, vary across regions, and evolve over time, but also levels, patterns, and trends of attitude polarization and ideological constraint. An open-source R package, hIRT, is available for fitting the proposed models.

Suggested Citation

  • Zhou, Xiang, 2019. "Hierarchical Item Response Models for Analyzing Public Opinion," Political Analysis, Cambridge University Press, vol. 27(4), pages 481-502, October.
  • Handle: RePEc:cup:polals:v:27:y:2019:i:04:p:481-502_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198718000633/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Michael Alvarez & Jian Cao & Yimeng Li, 2021. "Voting Experiences, Perceptions of Fraud, and Voter Confidence," Social Science Quarterly, Southwestern Social Science Association, vol. 102(4), pages 1225-1238, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:27:y:2019:i:04:p:481-502_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.