IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v27y2019i03p388-396_00.html
   My bibliography  Save this article

Dynamic Ecological Inference for Time-Varying Population Distributions Based on Sparse, Irregular, and Noisy Marginal Data

Author

Listed:
  • Caughey, Devin
  • Wang, Mallory

Abstract

Social scientists are frequently interested in how populations evolve over time. Creating poststratification weights for surveys, for example, requires information on the weighting variables’ joint distribution in the target population. Typically, however, population data are sparsely available across time periods. Even when population data are observed, the content and structure of the data—which variables are observed and whether their marginal or joint distributions are known—differ across time, in ways that preclude straightforward interpolation. As a consequence, survey weights are often based only on the small subset of auxiliary variables whose joint population distribution is observed regularly over time, and thus fail to take full advantage of auxiliary information. To address this problem, we develop a dynamic Bayesian ecological inference model for estimating multivariate categorical distributions from sparse, irregular, and noisy data on their marginal (or partially joint) distributions. Our approach combines (1) a Dirichlet sampling model for the observed margins conditional on the unobserved cell proportions; (2) a set of equations encoding the logical relationships among different population quantities; and (3) a Dirichlet transition model for the period-specific proportions that pools information across time periods. We illustrate this method by estimating annual U.S. phone-ownership rates by race and region based on population data irregularly available between 1930 and 1960. This approach may be useful in a wide variety of contexts where scholars wish to make dynamic ecological inferences about interior cells from marginal data. A new R package estsubpop implements the method.

Suggested Citation

  • Caughey, Devin & Wang, Mallory, 2019. "Dynamic Ecological Inference for Time-Varying Population Distributions Based on Sparse, Irregular, and Noisy Marginal Data," Political Analysis, Cambridge University Press, vol. 27(3), pages 388-396, July.
  • Handle: RePEc:cup:polals:v:27:y:2019:i:03:p:388-396_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198719000044/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devin Caughey & Sara Chatfield, 2020. "Causal inference and American political development: contrasts and complementarities," Public Choice, Springer, vol. 185(3), pages 359-376, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:27:y:2019:i:03:p:388-396_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.