IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v25y2017i04p483-504_00.html
   My bibliography  Save this article

Modeling Guessing Components in the Measurement of Political Knowledge

Author

Listed:
  • Tsai, Tsung-han
  • Lin, Chang-chih

Abstract

Due to the crucial role of political knowledge in democratic participation, the measurement of political knowledge has been a major concern in the discipline of political science. Common formats used for political knowledge questions include multiple-choice items and open-ended identification questions. The conventional wisdom holds that multiple-choice items induce guessing behavior, which leads to underestimated item-difficulty parameters and biased estimates of political knowledge. This article examines guessing behavior in multiple-choice items and argues that a successful guess requires certain levels of knowledge conditional on the difficulties of items. To deal with this issue, we propose a Bayesian IRT guessing model that accommodates the guessing components of item responses. The proposed model is applied to analyzing survey data in Taiwan, and the results show that the proposed model appropriately describes the guessing components based on respondents’ levels of political knowledge and item characteristics. That is, in general, partially informed respondents are more likely to have a successful guess because well-informed respondents do not need to guess and barely informed ones are highly seducible by the attractive distractors. We also examine the gender gap in political knowledge and find that, even when the guessing effect is accounted for, men are more knowledgeable than women about political affairs, which is consistent with the literature.

Suggested Citation

  • Tsai, Tsung-han & Lin, Chang-chih, 2017. "Modeling Guessing Components in the Measurement of Political Knowledge," Political Analysis, Cambridge University Press, vol. 25(4), pages 483-504, October.
  • Handle: RePEc:cup:polals:v:25:y:2017:i:04:p:483-504_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198717000213/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:25:y:2017:i:04:p:483-504_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.