IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v23y2015i04p506-517_01.html
   My bibliography  Save this article

Election Fraud: A Latent Class Framework for Digit-Based Tests

Author

Listed:
  • Medzihorsky, Juraj

Abstract

Digit-based election forensics (DBEF) typically relies on null hypothesis significance testing, with undesirable effects on substantive conclusions. This article proposes an alternative free of this problem. It rests on decomposing the observed numeral distribution into the “no fraud” and “fraud” latent classes, by finding the smallest fraction of numerals that needs to be either removed or reallocated to achieve a perfect fit of the “no fraud” model. The size of this fraction can be interpreted as a measure of fraudulence. Both alternatives are special cases of measures of model fit—the π∗ mixture index of fit and the Δ dissimilarity index, respectively. Furthermore, independently of the latent class framework, the distributional assumptions of DBEF can be relaxed in some contexts. Independently or jointly, the latent class framework and the relaxed distributional assumptions allow us to dissect the observed distributions using models more flexible than those of existing DBEF. Reanalysis of Beber and Scacco's (2012) data shows that the approach can lead to new substantive conclusions.

Suggested Citation

  • Medzihorsky, Juraj, 2015. "Election Fraud: A Latent Class Framework for Digit-Based Tests," Political Analysis, Cambridge University Press, vol. 23(4), pages 506-517.
  • Handle: RePEc:cup:polals:v:23:y:2015:i:04:p:506-517_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700011918/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ananyev, Maxim & Poyker, Michael, 2022. "Do dictators signal strength with electoral fraud?," European Journal of Political Economy, Elsevier, vol. 71(C).
    2. Christoph Koenig, 2024. "With a Little Help From the Crowd: Estimating Election Fraud with Forensic Methods," CEIS Research Paper 584, Tor Vergata University, CEIS, revised 28 Oct 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:23:y:2015:i:04:p:506-517_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.