IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v19y2011i02p173-187_01.html
   My bibliography  Save this article

Reliable Inference in Highly Stratified Contingency Tables: Using Latent Class Models as Density Estimators

Author

Listed:
  • Linzer, Drew A.

Abstract

Contingency tables are among the most basic and useful techniques available for analyzing categorical data, but they produce highly imprecise estimates in small samples or for population subgroups that arise following repeated stratification. I demonstrate that preprocessing an observed set of categorical variables using a latent class model can greatly improve the quality of table-based inferences. As a density estimator, the latent class model closely approximates the underlying joint distribution of the variables of interest, which enables reliable estimation of conditional probabilities and marginal effects, even among subgroups containing fewer than 40 observations. Though here focused on applications to public opinion, the procedure has a wide range of potential uses. I illustrate the benefits of the latent class model—based approach for greatly improved accuracy in estimating and forecasting vote preferences within small demographic subgroups using survey data from the 2004 and 2008 U.S. presidential election campaigns.

Suggested Citation

  • Linzer, Drew A., 2011. "Reliable Inference in Highly Stratified Contingency Tables: Using Latent Class Models as Density Estimators," Political Analysis, Cambridge University Press, vol. 19(2), pages 173-187, April.
  • Handle: RePEc:cup:polals:v:19:y:2011:i:02:p:173-187_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700012754/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniël W. Palm & L. Andries Ark & Jeroen K. Vermunt, 2016. "Divisive Latent Class Modeling as a Density Estimation Method for Categorical Data," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 52-72, April.
    2. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    3. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:19:y:2011:i:02:p:173-187_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.