IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v18y2010i03p316-336_01.html
   My bibliography  Save this article

Circular Data in Political Science and How to Handle It

Author

Listed:
  • Gill, Jeff
  • Hangartner, Dominik

Abstract

There has been no attention to circular (purely cyclical) data in political science research. We show that such data exist and are mishandled by models that do not take into account the inherently recycling nature of some phenomenon. Clock and calendar effects are the obvious cases, but directional data are observed as well. We describe a standard maximum likelihood regression modeling framework based on the von Mises distribution, then develop a general Bayesian regression procedure for the first time, providing an easy-to-use Metropolis-Hastings sampler for this approach. Applications include a chronographic analysis of U.S. domestic terrorism and directional party preferences in a two-dimensional ideological space for German Bundestag elections. The results demonstrate the importance of circular models to handle periodic and directional data in political science.

Suggested Citation

  • Gill, Jeff & Hangartner, Dominik, 2010. "Circular Data in Political Science and How to Handle It," Political Analysis, Cambridge University Press, vol. 18(3), pages 316-336, July.
  • Handle: RePEc:cup:polals:v:18:y:2010:i:03:p:316-336_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700012493/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James E. Monogan & David M. Konisky & Neal D. Woods, 2017. "Gone with the Wind: Federalism and the Strategic Location of Air Polluters," American Journal of Political Science, John Wiley & Sons, vol. 61(2), pages 257-270, April.
    2. Andrade, Ana C.C. & Pereira, Gustavo H.A. & Artes, Rinaldo, 2023. "The circular quantile residual," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Moritz N. Lang & Lisa Schlosser & Torsten Hothorn & Georg J. Mayr & Reto Stauffer & Achim Zeileis, 2020. "Circular regression trees and forests with an application to probabilistic wind direction forecasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1357-1374, November.
    4. Ameijeiras-Alonso, Jose & Gijbels, Irène & Verhasselt, Anneleen, 2022. "On a family of two–piece circular distributions," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Garnett P. McMillan & Timothy E. Hanson & Gabrielle Saunders & Frederick J. Gallun, 2013. "A two-component circular regression model for repeated measures auditory localization data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 515-534, August.
    6. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    7. Marco Marzio & Stefania Fensore & Agnese Panzera & Charles C. Taylor, 2018. "Circular local likelihood," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 921-945, December.
    8. Ohara, Kento & Hepplewhite, Matthew, 2024. "Just in Time? A Temporal Analysis of the Initiation of Legislation in Coalition Governments," I4R Discussion Paper Series 104, The Institute for Replication (I4R).
    9. Arnab Kumar Laha & A. C. Pravida Raja & K. C. Mahesh, 2019. "SB-robust estimation of mean direction for some new circular distributions," Statistical Papers, Springer, vol. 60(3), pages 877-902, June.
    10. Tanguiane, Andranick S., 2022. "Analysis of the 2021 Bundestag elections. 2/4. Political spectrum," Working Paper Series in Economics 152, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:18:y:2010:i:03:p:316-336_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.