Author
Listed:
- Ward, Michael D.
- Gleditsch, Kristian Skrede
Abstract
This article demonstrates how spatially dependent data with a categorical response variable can be addressed in a statistical model. We introduce the idea of an autologistic model where the response for one observation is dependent on the value of the response among adjacent observations. The autologistic model has likelihood function that is mathematically intractable, since the observations are conditionally dependent upon one another. We review alternative techniques for estimating this model, with special emphasis on recent advances using Markov chain Monte Carlo (MCMC) techniques. We evaluate a highly simplified autologistic model of conflict where the likelihood of war involvement for each nation is conditional on the war involvement of proximate states. We estimate this autologistic model for a single year (1988) via maximum pseudolikelihood and MCMC maximum likelihood methods. Our results indicate that the autologistic model fits the data much better than an unconditional model and that the MCMC estimates generally dominate the pseudolikelihood estimates. The autologistic model generates predicted probabilities greater than 0.5 and has relatively good predictive abilities in an out-of-sample forecast for the subsequent decade (1989 to 1998), correctly identifying not only ongoing conflicts, but also new ones.
Suggested Citation
Ward, Michael D. & Gleditsch, Kristian Skrede, 2002.
"Location, Location, Location: An MCMC Approach to Modeling the Spatial Context of War and Peace,"
Political Analysis, Cambridge University Press, vol. 10(3), pages 244-260, July.
Handle:
RePEc:cup:polals:v:10:y:2002:i:03:p:244-260_01
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:10:y:2002:i:03:p:244-260_01. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.