IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v9y2021i4p403-424_2.html
   My bibliography  Save this article

Large very dense subgraphs in a stream of edges

Author

Listed:
  • Mathieu, Claire
  • de Rougemont, Michel

Abstract

We study the detection and the reconstruction of a large very dense subgraph in a social graph with n nodes and m edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. \log n)$ . A subgraph S is very dense if it has $\Omega(|S|^2)$ edges. We uniformly sample the edges with a Reservoir of size $k=O(\sqrt{n}.\log n)$ . Our detection algorithm checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $\Omega(\sqrt{n})$ , then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.

Suggested Citation

  • Mathieu, Claire & de Rougemont, Michel, 2021. "Large very dense subgraphs in a stream of edges," Network Science, Cambridge University Press, vol. 9(4), pages 403-424, December.
  • Handle: RePEc:cup:netsci:v:9:y:2021:i:4:p:403-424_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124221000175/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:9:y:2021:i:4:p:403-424_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.