IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v9y2021i2p153-178_2.html
   My bibliography  Save this article

Artificial Benchmark for Community Detection (ABCD)—Fast random graph model with community structure

Author

Listed:
  • Kamiński, Bogumił
  • Prałat, Paweł
  • Théberge, François

Abstract

Most of the current complex networks that are of interest to practitioners possess a certain community structure that plays an important role in understanding the properties of these networks. For instance, a closely connected social communities exhibit faster rate of transmission of information in comparison to loosely connected communities. Moreover, many machine learning algorithms and tools that are developed for complex networks try to take advantage of the existence of communities to improve their performance or speed. As a result, there are many competing algorithms for detecting communities in large networks. Unfortunately, these algorithms are often quite sensitive and so they cannot be fine-tuned for a given, but a constantly changing, real-world network at hand. It is therefore important to test these algorithms for various scenarios that can only be done using synthetic graphs that have built-in community structure, power law degree distribution, and other typical properties observed in complex networks. The standard and extensively used method for generating artificial networks is the LFR graph generator. Unfortunately, this model has some scalability limitations and it is challenging to analyze it theoretically. Finally, the mixing parameter μ, the main parameter of the model guiding the strength of the communities, has a non-obvious interpretation and so can lead to unnaturally defined networks. In this paper, we provide an alternative random graph model with community structure and power law distribution for both degrees and community sizes, the Artificial Benchmark for Community Detection (ABCD graph). The model generates graphs with similar properties as the LFR one, and its main parameter ξ can be tuned to mimic its counterpart in the LFR model, the mixing parameter μ. We show that the new model solves the three issues identified above and more. In particular, we test the speed of our algorithm and do a number of experiments comparing basic properties of both ABCD and LFR. The conclusion is that these models produce graphs with comparable properties but ABCD is fast, simple, and can be easily tuned to allow the user to make a smooth transition between the two extremes: pure (independent) communities and random graph with no community structure.

Suggested Citation

  • Kamiński, Bogumił & Prałat, Paweł & Théberge, François, 2021. "Artificial Benchmark for Community Detection (ABCD)—Fast random graph model with community structure," Network Science, Cambridge University Press, vol. 9(2), pages 153-178, June.
  • Handle: RePEc:cup:netsci:v:9:y:2021:i:2:p:153-178_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124220000454/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hailiang & Chen, Bin & Ai, Chuan & Zhu, Mengna & Qiu, Xiaogang, 2022. "The evolving network model with community size and distance preferences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:9:y:2021:i:2:p:153-178_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.