IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v7y2019i03p353-375_00.html
   My bibliography  Save this article

Transitivity correlation: A descriptive measure of network transitivity

Author

Listed:
  • Dekker, David
  • Krackhardt, David
  • Snijders, Tom A. B.

Abstract

This paper proposes that common measures for network transitivity, based on the enumeration of transitive triples, do not reflect the theoretical statements about transitivity they aim to describe. These statements are often formulated as comparative conditional probabilities, but these are not directly reflected by simple functions of enumerations. We think that a better approach is obtained by considering the probability of a tie between two randomly drawn nodes, conditional on selected features of the network. Two measures of transitivity based on correlation coefficients between the existence of a tie and the existence, or the number, of two-paths between the nodes are developed, and called “Transitivity Phi” and “Transitivity Correlation.” Some desirable properties for these measures are studied and compared to existing clustering coefficients, in both random (Erdös–Renyi) and in stylized networks (windmills). Furthermore, it is shown that in a directed graph, under the condition of zero Transitivity Correlation, the total number of transitive triples is determined by four underlying features: size, density, reciprocity, and the covariance between in- and outdegrees. Also, it is demonstrated that plotting conditional probability of ties, given the number of two-paths, provides valuable insights into empirical regularities and irregularities of transitivity patterns.

Suggested Citation

  • Dekker, David & Krackhardt, David & Snijders, Tom A. B., 2019. "Transitivity correlation: A descriptive measure of network transitivity," Network Science, Cambridge University Press, vol. 7(3), pages 353-375, September.
  • Handle: RePEc:cup:netsci:v:7:y:2019:i:03:p:353-375_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124219000328/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Xinran & Lovrić, Marko, 2022. "Structural determinants of global trade in graphic paper and pulp products," Forest Policy and Economics, Elsevier, vol. 134(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:7:y:2019:i:03:p:353-375_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.