IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v5y2017i02p141-143_00.html
   My bibliography  Save this article

Introduction to the special issue on multilayer networks

Author

Listed:
  • MAGNANI, MATTEO
  • WASSERMAN, STANLEY

Abstract

During the last century, networks of several types have been used to model a wide range of physical, biological and social systems. For example, Moreno (1934) studied social networks with multiple types of ties, later called multiplex networks (Verbrugge, 1979; Minor, 1983; Lazega & Pattison, 1999) as well as networks with multiple types of actors. Networks with multiple types of actors and relational ties have often been used together: relevant examples are the extensions of two-mode networks studied by Wasserman & Iacobucci (1991), multi-level networks (Lazega & Snijders, 2016), and heterogeneous information networks (Sun et al., 2012). More recently, researchers in physics and computer science have developed models for different types of interconnected networks known as networks of networks (Buldyrev et al., 2010; D'Agostino & Scala, 2014), multilayer social networks (Magnani & Rossi, 2011), and interconnected networks (Dickison et al., 2012).

Suggested Citation

  • Magnani, Matteo & Wasserman, Stanley, 2017. "Introduction to the special issue on multilayer networks," Network Science, Cambridge University Press, vol. 5(2), pages 141-143, June.
  • Handle: RePEc:cup:netsci:v:5:y:2017:i:02:p:141-143_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124217000157/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Termeh Shafie & David Schoch, 2021. "Multiplexity analysis of networks using multigraph representations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1425-1444, December.
    2. Pavel N. Krivitsky & Laura M. Koehly & Christopher Steven Marcum, 2020. "Exponential-Family Random Graph Models for Multi-Layer Networks," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 630-659, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:5:y:2017:i:02:p:141-143_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.