IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v4y2016i04p407-432_00.html
   My bibliography  Save this article

Properties of latent variable network models

Author

Listed:
  • RASTELLI, RICCARDO
  • FRIEL, NIAL
  • RAFTERY, ADRIAN E.

Abstract

We derive properties of latent variable models for networks, a broad class of models that includes the widely used latent position models. We characterize several features of interest, with particular focus on the degree distribution, clustering coefficient, average path length, and degree correlations. We introduce the Gaussian latent position model, and derive analytic expressions and asymptotic approximations for its network properties. We pay particular attention to one special case, the Gaussian latent position model with random effects, and show that it can represent the heavy-tailed degree distributions, positive asymptotic clustering coefficients, and small-world behaviors that often occur in observed social networks. Finally, we illustrate the ability of the models to capture important features of real networks through several well-known datasets.

Suggested Citation

  • Rastelli, Riccardo & Friel, Nial & Raftery, Adrian E., 2016. "Properties of latent variable network models," Network Science, Cambridge University Press, vol. 4(4), pages 407-432, December.
  • Handle: RePEc:cup:netsci:v:4:y:2016:i:04:p:407-432_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124216000230/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hledik, Juraj & Rastelli, Riccardo, 2020. "A dynamic network model to measure exposure diversification in the Austrian interbank market," ESRB Working Paper Series 109, European Systemic Risk Board.
    2. Tracy Sweet & Samrachana Adhikari, 2020. "A Latent Space Network Model for Social Influence," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 251-274, June.
    3. Vanni, Fabio, 2024. "A visit generation process for human mobility random graphs with location-specific latent-variables: From land use to travel demand," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    5. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    6. Ick Hoon Jin & Minjeong Jeon & Michael Schweinberger & Jonghyun Yun & Lizhen Lin, 2022. "Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1225-1244, November.
    7. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    8. Robert Lunde & Purnamrita Sarkar, 2023. "Subsampling sparse graphons under minimal assumptions," Biometrika, Biometrika Trust, vol. 110(1), pages 15-32.
    9. Juraj Hledik & Riccardo Rastelli, 2018. "A dynamic network model to measure exposure diversification in the Austrian interbank market," Papers 1804.01367, arXiv.org, revised Aug 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:4:y:2016:i:04:p:407-432_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.