IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v4y2016i02p244-265_00.html
   My bibliography  Save this article

Interplay between signaling network design and swarm dynamics

Author

Listed:
  • SEKUNDA, ANDRÉ
  • KOMAREJI, MOHAMMAD
  • BOUFFANAIS, ROLAND

Abstract

Distributed information transfer is of paramount importance to the effectiveness of dynamic collective behaviors, especially when a swarm is confronted with complex environmental circumstances. Recently, the signaling network of interaction underlying such effective information transfers has been revealed in the particular case of bird flocks governed by a topological interaction. Such biological systems are known to be evolutionary optimized, but are also constrained by the very nature of the signaling mechanisms—owing to intrinsic limitations in sensory modalities—enabling communication among individuals. Here, we propose that artificial swarm design can be tackled from the angle of signaling network design. To this aim, we use different network models to investigate the impact of some network structural properties on the effectiveness of a specific emergent swarming behavior, namely global consensus. Two new network models are introduced, which together with the well-known Watts–Strogatz model form the basis for an analysis of the relationship between clustering, shortest path and speed to consensus. A network-theoretic approach combined with spectral graph theory tools are used to propose some signaling network design principles. Eventually, one key design principle—a concomitant reduction in clustering and connecting path—is successfully tested on simulations of swarms of self-propelled particles.

Suggested Citation

  • Sekunda, André & Komareji, Mohammad & Bouffanais, Roland, 2016. "Interplay between signaling network design and swarm dynamics," Network Science, Cambridge University Press, vol. 4(2), pages 244-265, June.
  • Handle: RePEc:cup:netsci:v:4:y:2016:i:02:p:244-265_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124216000059/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kooij, Robert E. & Sørensen, Nikolaj Horsevad & Bouffanais, Roland, 2021. "Tuning the clustering coefficient of generalized circulant networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:4:y:2016:i:02:p:244-265_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.