IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v12y2024i2p139-159_3.html
   My bibliography  Save this article

Generating preferential attachment graphs via a Pólya urn with expanding colors

Author

Listed:
  • Singh, Somya
  • Alajaji, Fady
  • Gharesifard, Bahman

Abstract

We introduce a novel preferential attachment model using the draw variables of a modified Pólya urn with an expanding number of colors, notably capable of modeling influential opinions (in terms of vertices of high degree) as the graph evolves. Similar to the Barabási-Albert model, the generated graph grows in size by one vertex at each time instance; in contrast however, each vertex of the graph is uniquely characterized by a color, which is represented by a ball color in the Pólya urn. More specifically at each time step, we draw a ball from the urn and return it to the urn along with a number of reinforcing balls of the same color; we also add another ball of a new color to the urn. We then construct an edge between the new vertex (corresponding to the new color) and the existing vertex whose color ball is drawn. Using color-coded vertices in conjunction with the time-varying reinforcing parameter allows for vertices added (born) later in the process to potentially attain a high degree in a way that is not captured in the Barabási-Albert model. We study the degree count of the vertices by analyzing the draw vectors of the underlying stochastic process. In particular, we establish the probability distribution of the random variable counting the number of draws of a given color which determines the degree of the vertex corresponding to that color in the graph. We further provide simulation results presenting a comparison between our model and the Barabási-Albert network.

Suggested Citation

  • Singh, Somya & Alajaji, Fady & Gharesifard, Bahman, 2024. "Generating preferential attachment graphs via a Pólya urn with expanding colors," Network Science, Cambridge University Press, vol. 12(2), pages 139-159, June.
  • Handle: RePEc:cup:netsci:v:12:y:2024:i:2:p:139-159_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124224000031/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:12:y:2024:i:2:p:139-159_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.