IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v12y2024i1p65-87_4.html
   My bibliography  Save this article

Audience selection for maximizing social influence

Author

Listed:
  • Sziklai, Balázs R.
  • Lengyel, Balázs

Abstract

Viral marketing campaigns target primarily those individuals who are central in social networks and hence have social influence. Marketing events, however, may attract diverse audience. Despite the importance of event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and compared based on their social influence. A typical application of Audience selection is choosing locations for a series of marketing events. The Audience selection problem is different from the well-known Influence Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a systemic test for ranking influence measures in the Audience Selection problem based on node sampling and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion model on two online social networks, we evaluate eight network measures of social influence. We demonstrate that the statistical assessment of these influence measures is remarkably different in the Audience Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the algorithm’s top choices exclusively.

Suggested Citation

  • Sziklai, Balázs R. & Lengyel, Balázs, 2024. "Audience selection for maximizing social influence," Network Science, Cambridge University Press, vol. 12(1), pages 65-87, March.
  • Handle: RePEc:cup:netsci:v:12:y:2024:i:1:p:65-87_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124223000231/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:12:y:2024:i:1:p:65-87_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.