IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v10y2022i4p361-380_3.html
   My bibliography  Save this article

Efficiently generating geometric inhomogeneous and hyperbolic random graphs

Author

Listed:
  • Bläsius, Thomas
  • Friedrich, Tobias
  • Katzmann, Maximilian
  • Meyer, Ulrich
  • Penschuck, Manuel
  • Weyand, Christopher

Abstract

Hyperbolic random graphs (HRGs) and geometric inhomogeneous random graphs (GIRGs) are two similar generative network models that were designed to resemble complex real-world networks. In particular, they have a power-law degree distribution with controllable exponent $\beta$ and high clustering that can be controlled via the temperature $T$ . We present the first implementation of an efficient GIRG generator running in expected linear time. Besides varying temperatures, it also supports underlying geometries of higher dimensions. It is capable of generating graphs with ten million edges in under a second on commodity hardware. The algorithm can be adapted to HRGs. Our resulting implementation is the fastest sequential HRG generator, despite the fact that we support non-zero temperatures. Though non-zero temperatures are crucial for many applications, most existing generators are restricted to $T = 0$ . We also support parallelization, although this is not the focus of this paper. Moreover, we note that our generators draw from the correct probability distribution, that is, they involve no approximation. Besides the generators themselves, we also provide an efficient algorithm to determine the non-trivial dependency between the average degree of the resulting graph and the input parameters of the GIRG model. This makes it possible to specify the desired expected average degree as input. Moreover, we investigate the differences between HRGs and GIRGs, shedding new light on the nature of the relation between the two models. Although HRGs represent, in a certain sense, a special case of the GIRG model, we find that a straightforward inclusion does not hold in practice. However, the difference is negligible for most use cases.

Suggested Citation

  • Bläsius, Thomas & Friedrich, Tobias & Katzmann, Maximilian & Meyer, Ulrich & Penschuck, Manuel & Weyand, Christopher, 2022. "Efficiently generating geometric inhomogeneous and hyperbolic random graphs," Network Science, Cambridge University Press, vol. 10(4), pages 361-380, December.
  • Handle: RePEc:cup:netsci:v:10:y:2022:i:4:p:361-380_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124222000327/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:10:y:2022:i:4:p:361-380_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.