IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v26y2022i4p920-944_3.html
   My bibliography  Save this article

Bayesian Estimation Of A Small-Scale New Keynesian Model With Heterogeneous Expectations

Author

Listed:
  • Elias, Christopher J.

Abstract

This paper uses Bayesian methods to estimate a small-scale New Keynesian model with heterogeneous expectations (HE). Agents form expectations via Euler equation adaptive learning (AL) and differ by the model they use to forecast. Type A agents use a correctly specified model, while type B and type C agents use misspecified models. Quarterly US data from the pre-Great Moderation and Great Moderation periods are used to jointly estimate the degree of agent heterogeneity, the AL parameters, and the deep model parameters. Results show that the data exhibit significant expectational heterogeneity, and that the HE model fits the data better than a model with homogeneous agent AL.

Suggested Citation

  • Elias, Christopher J., 2022. "Bayesian Estimation Of A Small-Scale New Keynesian Model With Heterogeneous Expectations," Macroeconomic Dynamics, Cambridge University Press, vol. 26(4), pages 920-944, June.
  • Handle: RePEc:cup:macdyn:v:26:y:2022:i:4:p:920-944_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100520000401/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:26:y:2022:i:4:p:920-944_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/mdy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.