IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v21y2017i07p1811-1826_00.html
   My bibliography  Save this article

On The Numerical Accuracy Of First-Order Approximate Solutions To Dsge Models

Author

Listed:
  • Heiberger, Christopher
  • Klarl, Torben
  • Maussner, Alfred

Abstract

Many algorithms that provide approximate solutions for dynamic stochastic general equilibrium (DSGE) models employ the QZ factorization because it allows a flexible formulation of the model and exempts the researcher from identifying equations that give raise to infinite eigenvalues. We show, by means of an example, that the policy functions obtained by this approach may differ from both the solution of a properly reduced system and the solution obtained from solving the system of nonlinear equations that arises from applying the implicit function theorem to the model's equilibrium conditions. As a consequence, simulation results may depend on the specific algorithm used and on the numerical values of parameters that are theoretically irrelevant. The sources of this inaccuracy are ill-conditioned matrices as they emerge, e.g., in models with strong habits. Researchers should be aware of those strange effects, and we propose several ways to handle them.

Suggested Citation

  • Heiberger, Christopher & Klarl, Torben & Maussner, Alfred, 2017. "On The Numerical Accuracy Of First-Order Approximate Solutions To Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 21(7), pages 1811-1826, October.
  • Handle: RePEc:cup:macdyn:v:21:y:2017:i:07:p:1811-1826_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100515000966/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Ivashchenko, 2022. "Dynamic Stochastic General Equilibrium Model with Multiple Trends and Structural Breaks," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 46-72, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:21:y:2017:i:07:p:1811-1826_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/mdy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.