IDEAS home Printed from https://ideas.repec.org/a/cup/eurrev/v27y2019i03p411-439_00.html
   My bibliography  Save this article

Big Data and Creativity

Author

Listed:
  • Dahlstedt, Palle

Abstract

Big data and machine learning techniques are increasingly applied to creative tasks, often with strong reactions of both awe and concern. But we have to be careful about where to attribute the creative agency. Is it really the machine that paints like van Gogh, or is it a human that uses a high-level tool to impart one pattern upon another, based on her aesthetic preferences? In this paper, the author analyses the problem of machine creativity, focusing on four central themes: the inherent convergence of machine learning and big data techniques, their dependence on assumptions and incomplete data, the possibility of explorative search as a new creative paradigm, and the related problem of the opacity of results from such methods. The Google Deep Dream project is brought in as an example to illustrate the discussion. Information and complexity are brought into the discussion as central concepts for both creative processes and the resulting artefacts, concluding that the complexity of the interaction between the creative agent and the environment during the creative process is a crucial parameter for meaningful creative output. Based on the exposed limitations in current technologies, the author concludes that the principal creative agency still lies in the developers and users of the tools, not in the data processing itself. Human effort and input still matters. But we can take a constructive approach, regarding big data techniques as tools one order of magnitude more complex than what was available before, allowing artists to work with abstractions previously unfeasible for computational work.

Suggested Citation

  • Dahlstedt, Palle, 2019. "Big Data and Creativity," European Review, Cambridge University Press, vol. 27(3), pages 411-439, July.
  • Handle: RePEc:cup:eurrev:v:27:y:2019:i:03:p:411-439_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1062798719000073/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chatterjee, Sidharta, 2024. "The What and How of Data Analysis," MPRA Paper 120831, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:eurrev:v:27:y:2019:i:03:p:411-439_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/erw .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.