IDEAS home Printed from https://ideas.repec.org/a/cup/eurrev/v23y2015i04p481-488_00.html
   My bibliography  Save this article

Sustainability: The Water and Energy Problem, and the Natural Design Solution

Author

Listed:
  • Bejan, Adrian

Abstract

People like to say that energy and water are two problems, two vital commodities in short supply. Here I draw attention to the emerging literature and physics principle (constructal law) that provide the scientific foundation for sustainability. I show that the sustainability need is about flow: the flow of energy and the flow of water through the inhabited space. All the flows needed for human life (transportation, heating, cooling, water) are driven by the purposeful consumption of fuels. This is why the wealth of a country (the GDP) is directly proportional to the annual consumption of fuel in that country. This hierarchical organization happens; it is natural and efficient. Sustainability is the one-word need that covers all the specific needs. Sustainability comes from greater freedom in changing the organization – the flow architecture – that sustains life. Greater freedom to change the design (from water and power to laws and government) leads to greater flow, wealth, life and staying power, i.e. sustainability.

Suggested Citation

  • Bejan, Adrian, 2015. "Sustainability: The Water and Energy Problem, and the Natural Design Solution," European Review, Cambridge University Press, vol. 23(4), pages 481-488, October.
  • Handle: RePEc:cup:eurrev:v:23:y:2015:i:04:p:481-488_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1062798715000216/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Shi & Xue Fang & Zhoufan Chen & Tyson Keen Phillips & Hiroatsu Fukuda, 2020. "A Didactic Pedagogical Approach toward Sustainable Architectural Education through Robotic Tectonics," Sustainability, MDPI, vol. 12(5), pages 1-14, February.
    2. Lazaros Mavromatidis, 2019. "Constructal Macroscale Thermodynamic Model of Spherical Urban Greenhouse Form with Double Thermal Envelope within Heat Currents," Sustainability, MDPI, vol. 11(14), pages 1-24, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:eurrev:v:23:y:2015:i:04:p:481-488_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/erw .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.