IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v8y1992i02p203-222_01.html
   My bibliography  Save this article

Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model

Author

Listed:
  • Delgado, Miguel A.

Abstract

Asymptotically efficient estimates for the multiple equations nonlinear regression model are obtained in the presence of heteroskedasticity of unknown form. The proposed estimator is a generalized least squares based on nonparametric nearest neighbor estimates of the conditional variance matrices. Some Monte Carlo experiments are reported.

Suggested Citation

  • Delgado, Miguel A., 1992. "Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model," Econometric Theory, Cambridge University Press, vol. 8(2), pages 203-222, June.
  • Handle: RePEc:cup:etheor:v:8:y:1992:i:02:p:203-222_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600012767/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    2. Inkmann, Joachim, 2000. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," Journal of Econometrics, Elsevier, vol. 97(2), pages 227-259, August.
    3. Long, M.C.Mark C., 2004. "College applications and the effect of affirmative action," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 319-342.
    4. Nilanjana Roy, 2002. "Is Adaptive Estimation Useful For Panel Models With Heteroskedasticity In The Individual Specific Error Component? Some Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 189-203.
    5. Miguel A. Delgado & Juan Mora, 1995. "On asymptotic inferences in non-parametric and semiparametric models with discrete and mixed regressors," Investigaciones Economicas, Fundación SEPI, vol. 19(3), pages 435-467, September.
    6. Marsh, L.C.Lawrence C., 2004. "The econometrics of higher education: editor's view," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 1-18.
    7. Miguel A. Delgado & Thomas J. Kniesner, 1997. "Count Data Models With Variance Of Unknown Form: An Application To A Hedonic Model Of Worker Absenteeism," The Review of Economics and Statistics, MIT Press, vol. 79(1), pages 41-49, February.
    8. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    9. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2006. "Joint LM test for homoskedasticity in a one-way error component model," Journal of Econometrics, Elsevier, vol. 134(2), pages 401-417, October.
    10. J. M. C. Santos Silva & Silvana Tenreyro, 2006. "The Log of Gravity," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 641-658, November.
    11. Álvarez, Begoña, 1998. "La demanda atendida de consultas médicas y atención urgente," DE - Documentos de Trabajo. Economía. DE 3890, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Inkmann, Joachim, 1997. "Circumventing multiple integration: A comparison of GMM and SML estimators for the panel probit model," Discussion Papers, Series II 339, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    13. Mnasri, Ayman & Nechi, Salem, 2021. "New nonlinear estimators of the gravity equation," Economic Modelling, Elsevier, vol. 95(C), pages 192-202.
    14. Chu, Ba & Jacho-Chávez, David T., 2012. "k-NEAREST NEIGHBOR ESTIMATION OF INVERSE-DENSITY-WEIGHTED EXPECTATIONS WITH DEPENDENT DATA," Econometric Theory, Cambridge University Press, vol. 28(4), pages 769-803, August.
    15. Álvarez, Begoña, 1997. "Nonparametric checks for count data models: an application to demand for health care in Spain," DES - Working Papers. Statistics and Econometrics. WS 4547, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:8:y:1992:i:02:p:203-222_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.