IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v8y1992i01p28-51_01.html
   My bibliography  Save this article

Continuous Record Asymptotics in Systems of Stochastic Differential Equations

Author

Listed:
  • Sørensen, Bent E.

Abstract

This paper considers estimation based on a set of T + 1 discrete observations, y(0), y(h), y(2h),…, y(Th) = y(N), where h is the sampling frequency and N is the span of the data. In contrast to the standard approach of driving N to infinity for a fixed sampling frequency, the current paper follows Phillips [35,36] and Perron [29] and examines the “dual” asymptotics implied by letting h tend to zero while the span N remains fixed.We suggest a way of explicitly embedding discrete processes into continuous-time processes, and using this approach we generalize the results of the above-mentioned authors and derive continuous record asymptotics for vector first-order processes with positive roots in a neighborhood of one and we also consider the case of a scalar second-order process. We illustrate the method by two examples. The first example is a near unit root model with drift and trend.

Suggested Citation

  • Sørensen, Bent E., 1992. "Continuous Record Asymptotics in Systems of Stochastic Differential Equations," Econometric Theory, Cambridge University Press, vol. 8(1), pages 28-51, March.
  • Handle: RePEc:cup:etheor:v:8:y:1992:i:01:p:28-51_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600010732/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:8:y:1992:i:01:p:28-51_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.