IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v7y1991i03p385-395_00.html
   My bibliography  Save this article

On Limited Dependent Variable Models: Maximum Likelihood Estimation and Test of One-sided Hypothesis

Author

Listed:
  • Silvapulle, Mervyn J.

Abstract

The limited dependent variable models with errors having log-concave density functions are studied here. For such models with normal errors, the asymptotic normality of the maximum likelihood estimator was established by Amemiya [1]. We show, when the density of the error distribution is log-concave, that the maximum likelihood estimator exists with arbitrarily large probability for large sample sizes, and is asymptotically normal. The general theory presented here includes the important special cases of normal, logistic, and extreme value error distributions. The main results are established under rather weak conditions. It is also shown that, under the null hypothesis, the asymptotic distribution of the likelihood ratio statistic for testing a one-sided alternative hypothesis is a weighted sum of chi-squares.

Suggested Citation

  • Silvapulle, Mervyn J., 1991. "On Limited Dependent Variable Models: Maximum Likelihood Estimation and Test of One-sided Hypothesis," Econometric Theory, Cambridge University Press, vol. 7(3), pages 385-395, September.
  • Handle: RePEc:cup:etheor:v:7:y:1991:i:03:p:385-395_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600004527/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abadir, Karim M. & Distaso, Walter, 2007. "Testing joint hypotheses when one of the alternatives is one-sided," Journal of Econometrics, Elsevier, vol. 140(2), pages 695-718, October.
    2. Zeng-Hua Lu, 2020. "Bahadur intercept with applications to one-sided testing," Statistical Papers, Springer, vol. 61(2), pages 645-658, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:7:y:1991:i:03:p:385-395_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.