IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v39y2023i6p1097-1122_2.html
   My bibliography  Save this article

Uniform Asymptotics And Confidence Regions Based On The Adaptive Lasso With Partially Consistent Tuning

Author

Listed:
  • Amann, Nicolai
  • Schneider, Ulrike

Abstract

We consider the adaptive Lasso estimator with componentwise tuning in the framework of a low-dimensional linear regression model. In our setting, at least one of the components is penalized at the rate of consistent model selection and certain components may not be penalized at all. We perform a detailed study of the consistency properties and the asymptotic distribution which includes the effects of componentwise tuning within a so-called moving-parameter framework. These results enable us to explicitly provide a set $\mathcal {M}$ such that every open superset acts as a confidence set with uniform asymptotic coverage equal to 1, whereas removing an arbitrarily small open set along the boundary yields a confidence set with uniform asymptotic coverage equal to 0. The shape of the set $\mathcal {M}$ depends on the regressor matrix as well as the deviations within the componentwise tuning parameters. Our findings can be viewed as a broad generalization of Pötscher and Schneider (2009, Journal of Statistical Planning and Inference 139, 2775–2790; 2010, Electronic Journal of Statistics 4, 334–360), who considered distributional properties and confidence intervals based on components of the adaptive Lasso estimator for the case of orthogonal regressors.

Suggested Citation

  • Amann, Nicolai & Schneider, Ulrike, 2023. "Uniform Asymptotics And Confidence Regions Based On The Adaptive Lasso With Partially Consistent Tuning," Econometric Theory, Cambridge University Press, vol. 39(6), pages 1097-1122, December.
  • Handle: RePEc:cup:etheor:v:39:y:2023:i:6:p:1097-1122_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466621000128/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:39:y:2023:i:6:p:1097-1122_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.