IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v36y2020i5p907-960_5.html
   My bibliography  Save this article

A Max-Correlation White Noise Test For Weakly Dependent Time Series

Author

Listed:
  • Hill, Jonathan B.
  • Motegi, Kaiji

Abstract

This article presents a bootstrapped p-value white noise test based on the maximum correlation, for a time series that may be weakly dependent under the null hypothesis. The time series may be prefiltered residuals. The test statistic is a normalized weighted maximum sample correlation coefficient $ \max _{1\leq h\leq \mathcal {L}_{n}}\sqrt {n}|\hat {\omega }_{n}(h)\hat {\rho }_{n}(h)|$, where $\hat {\omega }_{n}(h)$ are weights and the maximum lag $ \mathcal {L}_{n}$ increases at a rate slower than the sample size n. We only require uncorrelatedness under the null hypothesis, along with a moment contraction dependence property that includes mixing and nonmixing sequences. We show Shao’s (2011, Annals of Statistics 35, 1773–1801) dependent wild bootstrap is valid for a much larger class of processes than originally considered. It is also valid for residuals from a general class of parametric models as long as the bootstrap is applied to a first-order expansion of the sample correlation. We prove the bootstrap is asymptotically valid without exploiting extreme value theory (standard in the literature) or recent Gaussian approximation theory. Finally, we extend Escanciano and Lobato’s (2009, Journal of Econometrics 151, 140–149) automatic maximum lag selection to our setting with an unbounded lag set that ensures a consistent white noise test, and find it works extremely well in controlled experiments.

Suggested Citation

  • Hill, Jonathan B. & Motegi, Kaiji, 2020. "A Max-Correlation White Noise Test For Weakly Dependent Time Series," Econometric Theory, Cambridge University Press, vol. 36(5), pages 907-960, October.
  • Handle: RePEc:cup:etheor:v:36:y:2020:i:5:p:907-960_5
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466619000367/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    2. Olatunji Abdul Shobande & Joseph Onuche Enemona, 2021. "A Multivariate VAR Model for Evaluating Sustainable Finance and Natural Resource Curse in West Africa: Evidence from Nigeria and Ghana," Sustainability, MDPI, vol. 13(5), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:36:y:2020:i:5:p:907-960_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.