IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i06p1387-1417_00.html
   My bibliography  Save this article

Uniform Convergence Rates Over Maximal Domains In Structural Nonparametric Cointegrating Regression

Author

Listed:
  • Duffy, James A.

Abstract

This paper presents uniform convergence rates for kernel regression estimators, in the setting of a structural nonlinear cointegrating regression model. We generalise the existing literature in three ways. First, the domain to which these rates apply is much wider than the domains that have been considered in the existing literature, and can be chosen so as to contain as large a fraction of the sample as desired in the limit. Second, our results allow the regression disturbance to be serially correlated, and cross-correlated with the regressor; previous work on this problem (of obtaining uniform rates) having been confined entirely to the setting of an exogenous regressor. Third, we permit the bandwidth to be data-dependent, requiring it to satisfy only certain weak asymptotic shrinkage conditions. Our assumptions on the regressor process are consistent with a very broad range of departures from the standard unit root autoregressive model, allowing the regressor to be fractionally integrated, and to have an infinite variance (and even infinite lower-order moments).

Suggested Citation

  • Duffy, James A., 2017. "Uniform Convergence Rates Over Maximal Domains In Structural Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1387-1417, December.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1387-1417_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466616000451/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    2. James A. Duffy & Sophocles Mavroeidis & Sam Wycherley, 2022. "Cointegration with Occasionally Binding Constraints," Papers 2211.09604, arXiv.org, revised Jul 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1387-1417_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.