IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i03p755-778_00.html
   My bibliography  Save this article

Adaptive Long Memory Testing Under Heteroskedasticity

Author

Listed:
  • Harris, David
  • Kew, Hsein

Abstract

This paper considers adaptive hypothesis testing for the fractional differencing parameter in a parametric ARFIMA model with unconditional heteroskedasticity of unknown form. A weighted score test based on a nonparametric variance estimator is proposed and shown to be asymptotically equivalent, under the null and local alternatives, to the Neyman-Rao effective score test constructed under Gaussianity and known variance process. The proposed test is therefore asymptotically efficient under Gaussianity. The finite sample properties of the test are investigated in a Monte Carlo experiment and shown to provide potentially large power gains over the usual unweighted long memory test.

Suggested Citation

  • Harris, David & Kew, Hsein, 2017. "Adaptive Long Memory Testing Under Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 33(3), pages 755-778, June.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:755-778_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466615000481/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    2. Harris, David & Kew, Hsein & Taylor, A.M. Robert, 2020. "Level shift estimation in the presence of non-stationary volatility with an application to the unit root testing problem," Journal of Econometrics, Elsevier, vol. 219(2), pages 354-388.
    3. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    4. Zhang, Erhua & Wu, Jilin, 2020. "Adaptive estimation of AR∞ models with time-varying variances," Economics Letters, Elsevier, vol. 197(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:755-778_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.