IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i06p1359-1381_00.html
   My bibliography  Save this article

A Nonparametric Estimator For The Covariance Function Of Functional Data

Author

Listed:
  • Sancetta, Alessio

Abstract

Many quantities of interest in economics and finance can be represented as partially observed functional data. Examples include structural business cycle estimation, implied volatility smile, the yield curve. Having embedded these quantities into continuous random curves, estimation of the covariance function is needed to extract factors, perform dimensionality reduction, and conduct inference on the factor scores. A series expansion for the covariance function is considered. Under summability restrictions on the absolute values of the coefficients in the series expansion, an estimation procedure that is resilient to overfitting is proposed. Under certain conditions, the rate of consistency for the resulting estimator achieves the minimax rate, allowing the observations to be weakly dependent. When the domain of the functional data is K(>1) dimensional, the absolute summability restriction of the coefficients avoids the so called curse of dimensionality. As an application, a Box–Pierce statistic to test independence of partially observed functional data is derived. Simulation results and an empirical investigation of the efficiency of the Eurodollar futures contracts on the Chicago Mercantile Exchange are included.

Suggested Citation

  • Sancetta, Alessio, 2015. "A Nonparametric Estimator For The Covariance Function Of Functional Data," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1359-1381, December.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1359-1381_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000784/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Sancetta, 2017. "Estimation for the Prediction of Point Processes with Many Covariates," Papers 1702.05315, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1359-1381_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.