IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i06p1153-1191_00.html
   My bibliography  Save this article

Adaptive Nonparametric Regression With Conditional Heteroskedasticity

Author

Listed:
  • Jin, Sainan
  • Su, Liangjun
  • Xiao, Zhijie

Abstract

In this paper, we study adaptive nonparametric regression estimation in the presence of conditional heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance functions in a nonparametric regression model can be estimated adaptively based on the local profile likelihood principle. Both the one-step Newton–Raphson estimator and the local profile likelihood estimator are investigated. We show that the proposed estimators are asymptotically equivalent to the infeasible local likelihood estimators [e.g., Aerts and Claeskens (1997) Journal of the American Statistical Association 92, 1536–1545], which require knowledge of the error distribution. Simulation evidence suggests that when the distribution of the error term is different from Gaussian, the adaptive estimators of both conditional mean and variance can often achieve significant efficiency over the conventional local polynomial estimators.

Suggested Citation

  • Jin, Sainan & Su, Liangjun & Xiao, Zhijie, 2015. "Adaptive Nonparametric Regression With Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1153-1191, December.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1153-1191_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000450/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Alejo & Antonio F. Galvao & Julian Martinez-Iriarte & Gabriel Montes-Rojas, 2024. "Endogenous Heteroskedasticity in Linear Models," Papers 2412.02767, arXiv.org, revised Jan 2025.
    2. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    3. F. Comte & V. Genon-Catalot, 2020. "Regression function estimation on non compact support in an heteroscesdastic model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 93-128, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1153-1191_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.