IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i04p880-890_00.html
   My bibliography  Save this article

Asymptotic Inference For Ar Models With Heavy-Tailed G-Garch Noises

Author

Listed:
  • Zhang, Rongmao
  • Ling, Shiqing

Abstract

It is well known that the least squares estimator (LSE) of an AR(p) model with i.i.d. (independent and identically distributed) noises is n1/αL(n)-consistent when the tail index α of the noise is within (0,2) and is n1/2-consistent when α ≥ 2, where L(n) is a slowly varying function. When the noises are not i.i.d., however, the case is far from clear. This paper studies the LSE of AR(p) models with heavy-tailed G-GARCH(1,1) noises. When the tail index α of G-GARCH is within (0,2), it is shown that the LSE is not a consistent estimator of the parameters, but converges to a ratio of stable vectors. When α ε [2,4], it is shown that the LSE is n1–2/α-consistent if α ε (2,4), logn-consistent if α = 2, and n1/2 / logn-consistent if α = 4, and its limiting distribution is a functional of stable processes. Our results are significantly different from those with i.i.d. noises and should warn practitioners in economics and finance of the implications, including inconsistency, of heavy-tailed errors in the presence of conditional heterogeneity.

Suggested Citation

  • Zhang, Rongmao & Ling, Shiqing, 2015. "Asymptotic Inference For Ar Models With Heavy-Tailed G-Garch Noises," Econometric Theory, Cambridge University Press, vol. 31(4), pages 880-890, August.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:880-890_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000632/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guili Liao & Qimeng Liu & Rongmao Zhang & Shifang Zhang, 2022. "Rank test of unit‐root hypothesis with AR‐GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 695-719, September.
    2. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    3. She, Rui & Ling, Shiqing, 2020. "Inference in heavy-tailed vector error correction models," Journal of Econometrics, Elsevier, vol. 214(2), pages 433-450.
    4. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Papers 1905.01798, arXiv.org.
    5. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    6. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    7. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    8. Eunju Hwang, 2021. "Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations," Mathematics, MDPI, vol. 9(8), pages 1-10, April.
    9. Francq, Christian & Zakoian, Jean-Michel, 2021. "Testing the existence of moments and estimating the tail index of augmented garch processes," MPRA Paper 110511, University Library of Munich, Germany.
    10. Hwang, Eunju & Hong, Won-Tak, 2021. "A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation," Economics Letters, Elsevier, vol. 203(C).
    11. Hwang, Eunju, 2019. "A note on limit theory for mildly stationary autoregression with a heavy-tailed GARCH error process," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 59-68.
    12. Pedersen, Rasmus Søndergaard, 2017. "Robust inference in conditionally heteroskedastic autoregressions," MPRA Paper 81979, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:880-890_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.