IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v30y2014i06p1247-1271_00.html
   My bibliography  Save this article

General Inequalities For Gibbs Posterior With Nonadditive Empirical Risk

Author

Listed:
  • Li, Cheng
  • Jiang, Wenxin
  • Tanner, Martin A.

Abstract

The Gibbs posterior is a useful tool for risk minimization, which adopts a Bayesian framework and can incorporate convenient computational algorithms such as Markov chain Monte Carlo. We derive risk bounds for the Gibbs posterior using some general nonasymptotic inequalities, which can be used to derive nearly optimal convergence rates and select models to optimally balance the approximation errors and the stochastic errors. These inequalities are formulated in a very general way that does not require the empirical risk to be a usual sample average over independent observations. We apply this framework to study the convergence rate of the GMM (generalized method of moments) risk and derive an oracle inequality for the ranking risk, where models are selected based on the Gibbs posterior with a nonadditive empirical risk.

Suggested Citation

  • Li, Cheng & Jiang, Wenxin & Tanner, Martin A., 2014. "General Inequalities For Gibbs Posterior With Nonadditive Empirical Risk," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1247-1271, December.
  • Handle: RePEc:cup:etheor:v:30:y:2014:i:06:p:1247-1271_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000152/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhik Ghosh & Ayanendranath Basu, 2016. "Robust Bayes estimation using the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 413-437, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:30:y:2014:i:06:p:1247-1271_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.