IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v30y2014i05p1110-1133_00.html
   My bibliography  Save this article

Uniform Convergence For Nonparametric Estimators With Nonstationary Data

Author

Listed:
  • Chan, Nigel
  • Wang, Qiying

Abstract

Sharp upper and lower uniform bounds are established for a general class of functionals of integrated and fractionally integrated time series. The main result is used to develop optimal uniform convergence for the Nadaraya-Watson estimator and the local linear nonparametric estimator in a nonlinear cointegrating regression model. Unlike the point-wise situation, it is shown that the performance of the local linear nonparametric estimator is superior to that of the Nadaraya-Watson estimator in uniform asymptotics.

Suggested Citation

  • Chan, Nigel & Wang, Qiying, 2014. "Uniform Convergence For Nonparametric Estimators With Nonstationary Data," Econometric Theory, Cambridge University Press, vol. 30(5), pages 1110-1133, October.
  • Handle: RePEc:cup:etheor:v:30:y:2014:i:05:p:1110-1133_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S026646661400005X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    2. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    3. Biqing Cai & Chaohua Dong & Jiti Gao, 2015. "Orthogonal Series Estimation in Nonlinear Cointegrating Models with Endogeneity," Monash Econometrics and Business Statistics Working Papers 18/15, Monash University, Department of Econometrics and Business Statistics.
    4. Sepideh Mosaferi & Mark S. Kaiser, 2021. "Nonparametric Cointegrating Regression Functions with Endogeneity and Semi-Long Memory," Papers 2111.00972, arXiv.org, revised Aug 2022.
    5. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    6. James A. Duffy, 2015. "Uniform Convergence Rates over Maximal Domains in Structural Nonparametric Cointegrating Regression," Economics Papers 2015-W03, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:30:y:2014:i:05:p:1110-1133_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.