IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v30y2014i05p1078-1109_00.html
   My bibliography  Save this article

Distributions Of Quadratic Functionals Of The Fractional Brownian Motion Based On A Martingale Approximation

Author

Listed:
  • Tanaka, Katsuto

Abstract

The present paper deals with the distributions related to the fractional Brownian motion (fBm). In particular, we try to compute the distributions of (ratios of) its quadratic functionals, not by simulations, but by numerically inverting the associated characteristic functions (c.f.s). Among them is the fractional unit root distribution. It turns out that the derivation of the c.f.s based on the standard approaches used for the ordinary Bm is inapplicable. Here the martingale approximation to the fBm suggested in the literature is used to compute an approximation to the distributions of such functionals. The associated c.f. is obtained via the Fredholm determinant. Comparison of the first two moments of the approximate with true distributions is made, and simulations are conducted to examine the performance of the approximation. We also find an interesting moment property of the approximate fractional unit root distribution, and a conjecture is given that the same property will hold for the true fractional unit root distribution.

Suggested Citation

  • Tanaka, Katsuto, 2014. "Distributions Of Quadratic Functionals Of The Fractional Brownian Motion Based On A Martingale Approximation," Econometric Theory, Cambridge University Press, vol. 30(5), pages 1078-1109, October.
  • Handle: RePEc:cup:etheor:v:30:y:2014:i:05:p:1078-1109_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000048/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katsuto Tanaka, 2020. "Comparison of the LS-based estimators and the MLE for the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 415-434, July.
    2. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:30:y:2014:i:05:p:1078-1109_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.