IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v29y2013i05p920-940_00.html
   My bibliography  Save this article

Tail Index Of An Ar(1) Model With Arch(1) Errors

Author

Listed:
  • Chan, Ngai Hang
  • Li, Deyuan
  • Peng, Liang
  • Zhang, Rongmao

Abstract

Relevant sample quantities such as the sample autocorrelation function and extremes contain useful information about autoregressive time series with heteroskedastic errors. As these quantities usually depend on the tail index of the underlying heteroskedastic time series, estimating the tail index becomes an important task. Since the tail index of such a model is determined by a moment equation, one can estimate the underlying tail index by solving the sample moment equation with the unknown parameters being replaced by their quasi-maximum likelihood estimates. To construct a confidence interval for the tail index, one needs to estimate the complicated asymptotic variance of the tail index estimator, however. In this paper the asymptotic normality of the tail index estimator is first derived, and a profile empirical likelihood method to construct a confidence interval for the tail index is then proposed. A simulation study shows that the proposed empirical likelihood method works better than the bootstrap method in terms of coverage accuracy, especially when the process is nearly nonstationary.

Suggested Citation

  • Chan, Ngai Hang & Li, Deyuan & Peng, Liang & Zhang, Rongmao, 2013. "Tail Index Of An Ar(1) Model With Arch(1) Errors," Econometric Theory, Cambridge University Press, vol. 29(5), pages 920-940, October.
  • Handle: RePEc:cup:etheor:v:29:y:2013:i:05:p:920-940_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466612000801/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    2. Francq, Christian & Zakoian, Jean-Michel, 2021. "Testing the existence of moments and estimating the tail index of augmented garch processes," MPRA Paper 110511, University Library of Munich, Germany.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. León, Ángel & Ñíguez, Trino-Manuel, 2021. "The transformed Gram Charlier distribution: Parametric properties and financial risk applications," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 323-349.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:29:y:2013:i:05:p:920-940_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.