IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v29y2013i04p699-734_00.html
   My bibliography  Save this article

Multistep Prediction Of Panel Vector Autoregressive Processes

Author

Listed:
  • Greenaway-McGrevy, Ryan

Abstract

This paper considers the conventional recursive (otherwise known as plug-in) and direct multistep forecasts in a panel vector autoregressive framework. We derive asymptotic expressions for the mean square prediction error (MSPE) of both forecasts as N (cross sections) and T (time periods) grow large. Both the bias and variance of the least squares fitting are manifest in the MSPE. Using these expressions, we consider the effect of model specification on predictor accuracy. When the fitted lag order (q) is equal to or exceeds the true lag order (p), the direct MSPE is larger than the recursive MSPE. On the other hand, when the fitted lag order is underspecified, the direct MSPE is smaller than the recursive MSPE. The recursive MSPE is increasing in q for all q ≥ p. In contrast, the direct MSPE is not monotonic in q within the permissible parameter space. Extensions to bias-corrected least squares estimators are considered.

Suggested Citation

  • Greenaway-McGrevy, Ryan, 2013. "Multistep Prediction Of Panel Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 29(4), pages 699-734, August.
  • Handle: RePEc:cup:etheor:v:29:y:2013:i:04:p:699-734_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466612000679/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Greenaway-McGrevy, Ryan, 2015. "Evaluating panel data forecasts under independent realization," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 108-125.
    2. Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:29:y:2013:i:04:p:699-734_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.