IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v29y2013i02p289-323_00.html
   My bibliography  Save this article

Wald Tests For Detecting Multiple Structural Changes In Persistence

Author

Listed:
  • Kejriwal, Mohitosh
  • Perron, Pierre
  • Zhou, Jing

Abstract

This paper considers the problem of testing for multiple structural changes in the persistence of a univariate time series. We propose sup-Wald tests of the null hypothesis that the process has an autoregressive unit root throughout the sample against the alternative hypothesis that the process alternates between stationary and unit root regimes. We derive the limit distributions of the tests under the null and establish their consistency under the relevant alternatives. We further show that the tests are inconsistent when directed against the incorrect alternative, thereby enabling identification of the nature of persistence in the initial regime. We also propose hybrid testing procedures that allow ruling out of stable stationary processes or ones that are subject to only stationary changes under the null, thereby aiding the researcher in interpreting a rejection as emanating from a switch between a unit root and stationary regime. The computation of the test statistics as well as asymptotic critical values is facilitated by the dynamic programming algorithm proposed in Perron and Qu (2006, Journal of Econometrics134, 373–399) which allows imposing within- and cross-regime restrictions on the parameters. Finally, we present Monte Carlo evidence to show that the proposed procedures perform well in finite samples relative to those available in the literature.

Suggested Citation

  • Kejriwal, Mohitosh & Perron, Pierre & Zhou, Jing, 2013. "Wald Tests For Detecting Multiple Structural Changes In Persistence," Econometric Theory, Cambridge University Press, vol. 29(2), pages 289-323, April.
  • Handle: RePEc:cup:etheor:v:29:y:2013:i:02:p:289-323_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466612000357/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:29:y:2013:i:02:p:289-323_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.