IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v28y2012i03p705-717_00.html
   My bibliography  Save this article

Toward A Unified Interval Estimation Of Autoregressions

Author

Listed:
  • Chan, Ngai Hang
  • Li, Deyuan
  • Peng, Liang

Abstract

An empirical likelihood–based confidence interval is proposed for interval estimations of the autoregressive coefficient of a first-order autoregressive model via weighted score equations. Although the proposed weighted estimate is less efficient than the usual least squares estimate, its asymptotic limit is always normal without assuming stationarity of the process. Unlike the bootstrap method or the least squares procedure, the proposed empirical likelihood–based confidence interval is applicable regardless of whether the underlying autoregressive process is stationary, unit root, near-integrated, or even explosive, thereby providing a unified approach for interval estimation of an AR(1) model to encompass all situations. Finite-sample simulation studies confirm the effectiveness of the proposed method.

Suggested Citation

  • Chan, Ngai Hang & Li, Deyuan & Peng, Liang, 2012. "Toward A Unified Interval Estimation Of Autoregressions," Econometric Theory, Cambridge University Press, vol. 28(3), pages 705-717, June.
  • Handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:705-717_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466611000727/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fukang Zhu & Zongwu Cai & Liang Peng, 2014. "Predictive regressions for macroeconomic data," Papers 1404.7642, arXiv.org.
    2. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    3. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    4. Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    5. Chang, Seong Yeon, 2020. "A new test of asset return predictability with an unstable predictor," Economics Letters, Elsevier, vol. 196(C).
    6. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    7. Nate Millington, 2015. "From urban scar to ‘park in the sky’: terrain vague, urban design, and the remaking of New York City’s High Line Park," Environment and Planning A, , vol. 47(11), pages 2324-2338, November.
    8. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2017. "Random Coefficient Continuous Systems: Testing for Extreme Sample Path Behaviour," Economics and Statistics Working Papers 18-2017, Singapore Management University, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:705-717_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.